Introduction to Cable Fault Location

Cable Fault diagnosis

For cable fault location, we distinguish in:

- Parallel Faults:
 - Low resistance : $R_f \le 300 Ω$
 - High resistance: R_f ≥ 300 Ω
- Series Faults:
 - Low resistance : $R_f \le 10 \Omega$
 - High resistance: $R_f \ge 10 \Omega$

Low resistance means: Standard pulse echo method should be possible High resistance means: High Voltage Methods should be applied

Decision – Low Resistance Fault? Yes, then TDR

Decision – Low Resistance Fault? Yes, then TDR

Pulses visible on the screen of the TDR

- PULSE ECHO: Low resistance Fault <300Ω</p>
 - TDR stands for Time Domain Reflection
 - model TDR1699: High Voltage Inc.

Decision – Low Resistance Fault? Yes, then TDR

Typical traces

Cable without fault (start / end of cable)

Parallel Resistance Fault

Short circuit Fault

Decision – High Resistance Fault? Yes, then HV Methods

Decision – High Resistance Fault? Yes, ARC REFLECTION

- It is a combination between:
 - TDR
 - Surge generator
 - Arc stabilisation unit.
- ➤ This method allows to prelocate high resistance faults and flashing faults, using standard pulse echo techniques

This method can be used anywhere where a fault can be ignited.

CDS3632U

CDS2016U

CDS3632U Arc Reflection

CDS3632U Arc Reflection

Typical Traces

Decision – High Resistance Fault? Yes, then HV Methods

Decision – High Resistance Fault? Yes, IMPULSE CURRENT

- > It is a combination between:
 - Surge generator
 - TDR (Memory)
 - Pulses are detected by an inductive coupler

(Current Transformer)

➤ This method allows to prelocate high resistance faults and flashing faults.

This concept has 2 methods:

- > Standard method
- ▶Loop on Loop off method (Advanced)

CDS3632U

CDS2016U

CDS3632U Impulse Current ICE

CDS3632U Impulse Current ICE

The surge generator sends a HV Impulse into the cable.

This creates a spark at the faulty spot.

This spark is a source for an impulse which is used to measure the fault distance

Shock Discharge Generator:

CDS3632U Impulse Current ICE

Impulse Current ICE Standard method—Results 1 &2

Cable Fault Location

PIN POINT Fault Location

What is Pinpoint Fault Location?

➤ It is the technique used to accurately identifying the actual point of fault (all other techniques up to now have been <u>pre</u>location!)

Basics:

➤ A Surge generator is used to generate a "flashover" at the point of fault.

The noise, created by this flashover, is then detected using a ground microphone + amplifier and headphone

PIN POINT Fault Location

- Using an Impulse / Surge generator in conjunction with acoustic and electromagnetic detection.
- Dominates fault pinpointing.
- It is the best, accurate way of pinpointing the fault position
- It has an almost perfect record of success in pinpointing faults
- A measure of your success is how many excavations there have been!

