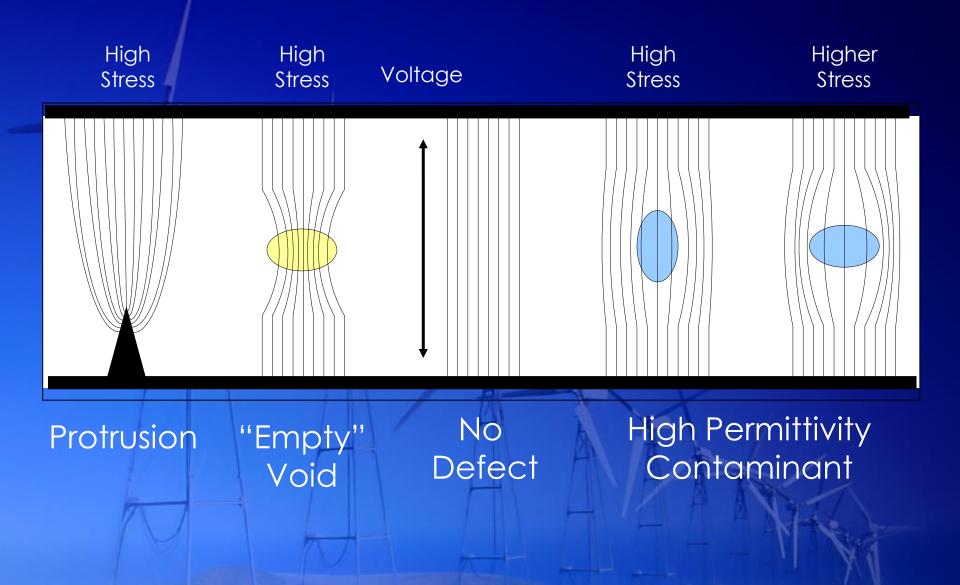

VLF AC Testing High Voltage, Inc. Copake, NY USA

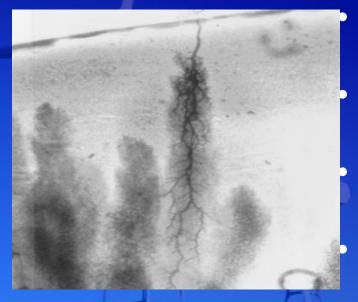
www.hvinc.com

Major Cable Components



Good Cable = Uniform electric field

When both shields are: Smooth Intact Electric field lines are uniform, with a controlled electrical stress distribution.


Basic stress enhancements

Tree effect

Conversion of water to electrical trees

Electrical tree growing from water tree

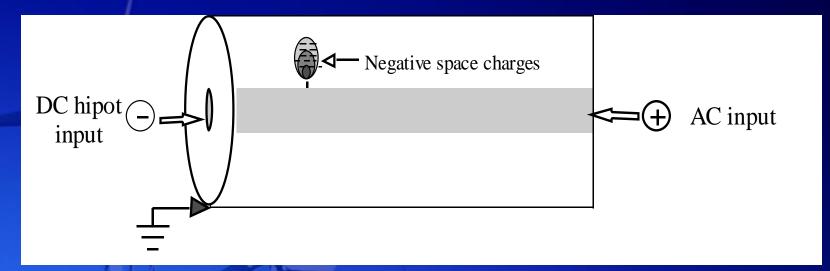
Acts as a stress enhancement or protrusion (non-conducting) Water tree increases local electric field

Water tree also creates local mechanical stresses

If electrical and mechanical stresses high enough ⇒ electrical tree initiates

Electrical tree completes the failure path – rapid growth

Dc testing


Advantages:

- - DC hipots are small, portable, and economical
- - Easy to operate
- Considered non-destructive

• Disadvantages:

- DC has been found to damage solid dielectric insulation
- DC leakage currents ineffective at determining cable life
- No diagnostic tools available

Why DC is damaging

- DC hipot output negatively charges up water tree areas.
- These "trapped space charges" remain after test.
- When AC is reapplied, there's a high difference of potential across very little of the insulation. Leads to electrical trees cable fails.

No testing

Advantages:

– - Easy to operate
– - No expensive equipment

• Disadvantages:

- - Unplanned outages
- - Loss of revenue
- No feel for the health of your system
- - Reactive" mentality, not proactive

Power frequency testing

Advantages:

- - Same profile as service conditions
 - - Correlates to factory testing
 - - Allows diagnostic testing

• Disadvantages:

- Very Large and Expensive equipment
- - Difficult to operate

VLF testing

Advantages:

- Stress similar to service conditions
 - Light weight, low cost
 - Easy to use
 - Easy to interpret results, Go-No Go test
 - Sine wave output can be used with diagnostic equipment
- Disadvantages:
 - Voltage waveform in some designs (trapezoidal) don't allow diagnostics of PD or Tan Delta.
 - Destructive cable may fail under test

What is vlf?

A VLF instrument is just an AC hipot with an output frequency lower than 50/60 Hz.

Very Low Frequency: 0.1 Hz and lower

By decreasing the frequency, it is possible to test miles of cable with a small and affordable unit.

Models range from 0.1 – 0.01 Hz.

Vlf explained

 $2 \times pi \times f \times C$

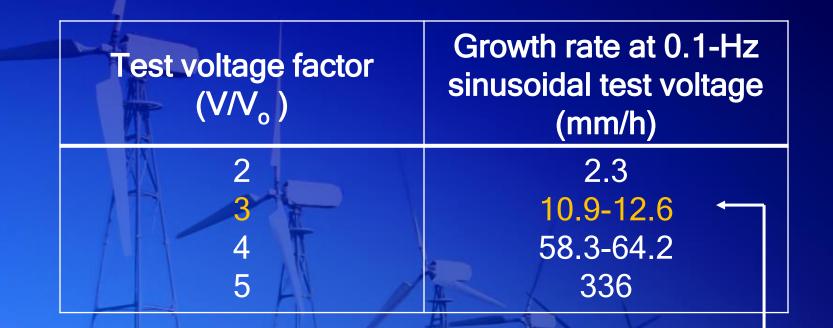
The lower the frequency, the higher X_c (capacitive reactance).

- The higher X_c (or resistance across the power supply output),
- the lower the current/power needed to apply a desired voltage.

At 0.1 Hz, it takes 600 times less power to test a cable, or any other high capacitance load, than at 60 Hz. At 0.01 Hz, 6000 times higher capacitive loads can be tested than at 60 Hz.

60 Hz vs. 0.1 Hz

At 60 Hz. a 1 μ F cable has an X_c of 2.65 kOhms. At 22 kV, it requires 8.3 amps of current to test. Total power supply rating must be 183 kVA. At 0.1 Hz, the X_c is 1.59 megohms. At 22 kV, the current needed is 14 mA. Total supply power needed is .304 kVA.


VLF rapidly grows defects to failure. VLF is non-destructive to good insulation.

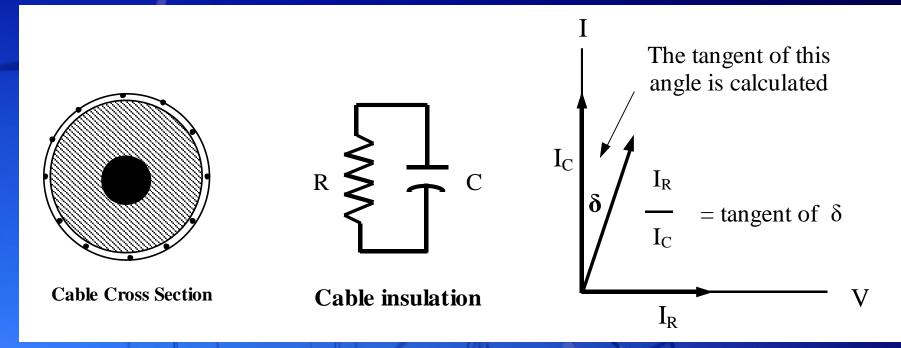
VLF exposes existing defects in insulation and accessories that can be excited by the applied voltage. VLF with Tan Delta or PD offers an excellent non-destructive diagnostic test.

IEEE 400.2 Field Test Voltages For Shielded Power Cable Systems Using Sine Wave Output VLF

Waveform	Cable system rating (phase to phase) [kV]	Installation (phase to ground)		Accep (phase to		Maintenance ² (phase to ground) (see Note 2)	
		[kV rms]	[kV peak]	[kV rms]	[kV peak]	[kV rms]	[kV peak]
Sinusoidal	5	9	13	10	14	7	10
	8	11	16	13	18	10	14
	15	19	27	21	30	16	22
	20	24	34	26	37	20	28
		(Note 3)	(Note 3)				
	25	29	41	32	45	24	34
		(Note 3)	(Note 3)			(Note 3)	(Note 3)
	28	32	45	36	51	27	38
				(Note 3)	(Note 3)		
	30	34	48	38	54	29	41
						(Note 3)	(Note 3)
	35	39	55	44	62	33	47
	46	51	72	57	81	43	61
	69	75	106	84	119	63	89

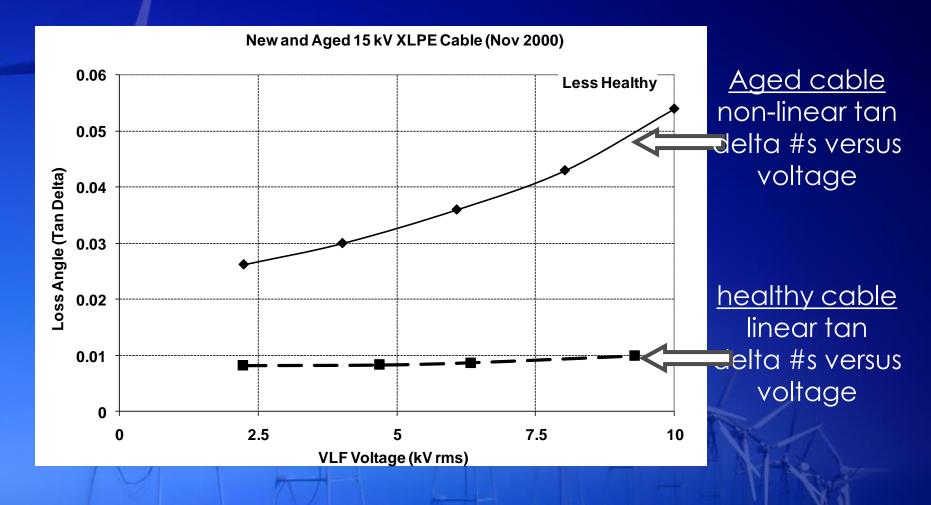
XLPE tree growth rate

A 15kV 133% cable has an insulation thickness of 5.9 mm. In a 30 minute test, nearly all defects will grow to failure. **XPLE** Testing statistics


TNB in Malaysia 3 V₀ @ 60 minutes 17,435 VLF tests performed – 2,179 cable failures

Minutes to failure	Failures	% of total	
0 - 12	1472	67.62	
13 - 30	469	21.54	≈ 89.16 %
31 - 45	129	5.93	/0
46 - 60	107	4.92	

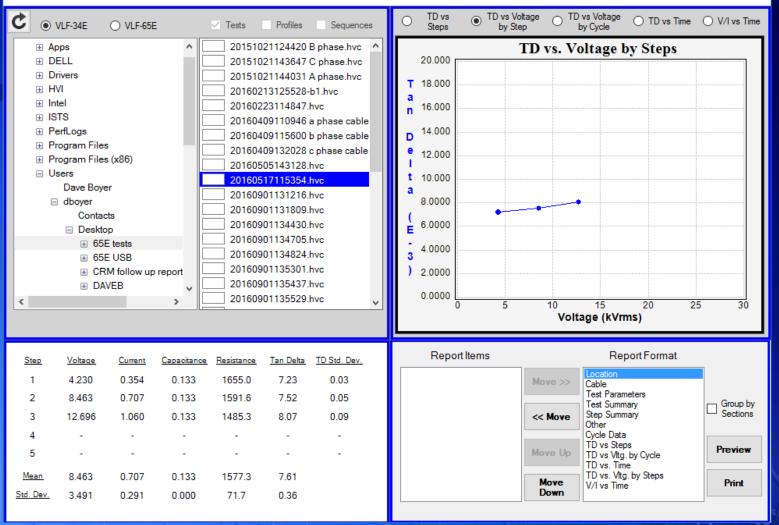
2.78% of tested cables failed later in service. (Many cables were PILC) Tests conducted 2001 – 2002


Diagnostic Cable Test Methods Partial Discharge Tan Delta

Simplified Cable Model and Phasor Drawing Tan Delta = I_R / I_C - measured in radians

 With perfect insulation, a cable is a near perfect capacitor, with a 90° phase shift between voltage and current. Less than 90° indicates insulation degradation. Cables can be rated good, marginal, or bad.

Tan Delta vs.Voltage for New and Aged XLPE Cables


Tan delta stability

🖷 Graphing And Reporting × _ TD vs Voltage TD vs TD vs Voltage C \bigcirc ○ TD vs Time ○ V/I vs Time С VLF-34E VLF-65E Tests Profiles Sequences by Step by Cycle Steps 20151021124420 B phase.hvc **TD vs. Voltage by Cycles** Apps ^ DELL 20.000 20151021143647 C phase.hvc Drivers 20151021144031 A phase.hvc 18.000 т. ∃ HVI 20160213125528-b1.hvc а Intel 20160223114847.hvc 16.000 n ISTS 20160409110946 a phase cable PerfLogs 14.000 20160409115600 b phase cable D Program Files 20160409132028 c phase cable e 12.000 Program Files (x86) 20160505143128.hvc Users t 10.000 20160517115354.hvc Dave Boyer а 20160901131216.hvc 8.0000 dboyer 20160901131809.hvc 1 Contacts 20160901134430.hvc 6.0000 Е Desktop 20160901134705.hvc 65E tests 4.0000 20160901134824.hvc 3 65E USB 20160901135301.hvc CRM follow up report 2.0000 20160901135437.hvc DAVEB ÷. 0.0000 20160901135529.hvc > < ¥ 5 10 15 20 25 30 0 Voltage (kVrms) Report Items Report Format Voltage Resistance Tan Delta TD Std. Dev. Step Current Capacitance locatio 1 4.230 0.354 0.133 1655.0 7.23 0.03 Cable Test Parameters 2 8.463 0.707 0.133 1591.6 7.52 0.05 Test Summary Group by Sections 3 8.07 Step Summary 12.696 1.060 0.133 1485.3 0.09 << Move Other 4 Cycle Data TD vs Steps Preview 5 TD vs Vltg. by Cycle -----TD vs. Time TD vs. Vitg. by Steps Mean 8.463 0.707 0.133 1577.3 7.61 Move Print V/Ivs Time Down Std. Dev. 3.491 0.291 0.000 71.7 0.36


Tan delta tip up

🖳 Graphing And Reporting

– 🗆 🗙

Monitored withstand test

<

🛃 🔲 🔍 Zoom 👻 🚺 ┥ 🛛 1 of 1 🕨 🔰 🗙 Close

Fault: Overload

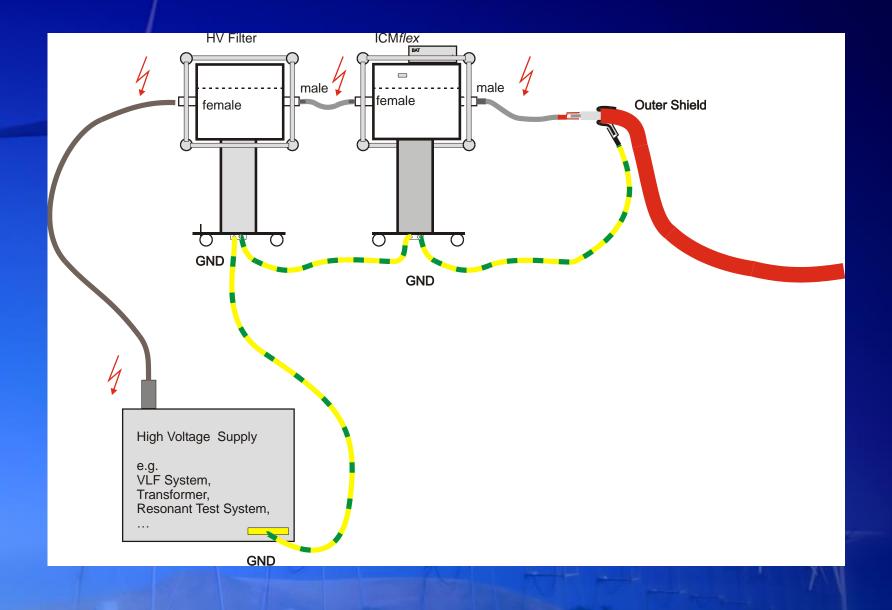
 \times

VLF Tan-Delta Report

Parameters _ 20160517115354.hvc

Waveform: SinewaveFrequency: .1 (hz)File Name: C:\Users\dboyer\Desktop\65Etests\20160517115354.hvcDate/Time: 5/17/201611:53:55 AMPhase: A

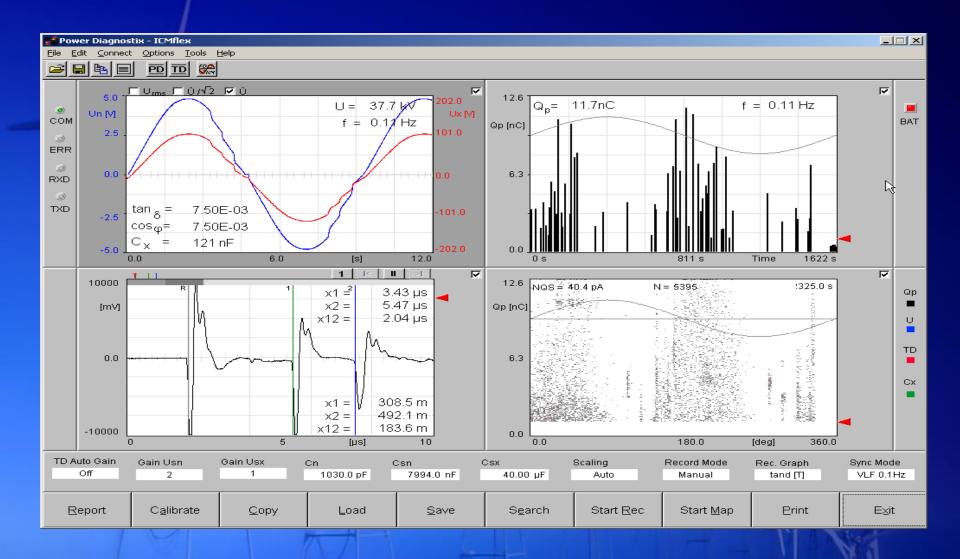
Step Summary _ 20160517115354.hvc


Step	Cycles	Source (kV)	Duration (min)	Voltage (kV)	Current (mA)	Tan Delta (E-3)	Capacitance (uF)	Resistance (MOhm)	Event
1	18	4.0	3	4.230	0.354	7.229	0.133	1654.978	0
			Std. Dev.	0.000	0.000	0.031	0.000	7.009	
2	18	8.0	3	8.463	0.707	7.520	0.133	1591.632	0
			Std. Dev.	0.002	0.000	0.053	0.000	11.115	
3	18	12.0	3	12.696	1.060	8.066	0.133	1485.253	0
			Std. Dev.	0.006	0.000	0.089	0.000	16.012	

> ...

Assessment of Unidentified Filled insulations

		Condition Assessment [10 ⁻³]		No Action Required	Further Study Advised	Action				
			Stability for TD _{U0} (standard deviation)		<0.1	0.1 to 1.3	>1.3			
			Tip Up (TD _{1.5U0} - TD _{0.5U0})		<5	or 5 to 100				
	144		T:T	TT.			or	-		
		$\begin{array}{l} Tip \ Up \ Tip \ Up \\ \{(TD_{1.5U_0} - TD_{U_0}) - \\ (TD_{U_0} - TD_{0.5U_0})\} \end{array}$		<0.5	0.5 to 30	>30				
		Mean TD at U0		&		or				
				<35	35 to 120	>120				
Step	Cycles	Source (kV)	Duration (min)		ltage kV)	Current (mA)	Tan Delta (E-3)	Capacitance (uF)	Resistance (MOhm)	Event
1	18	4.0	3	4.230		0.354	7.229	0.133	1654.978	0
	Std. Dev. 0		0.	.000	0.000	0.031	0.000	7.009	J	
2	18	8.0	3 Std. Dev.	8.463 0.002		0.707	7.520	0.133	1591.632 11.115	0
3	18	12.0	3	12.696		1.060	8.066	0.133	1485.253	0
			Std. Dev.	0.	.006	0.000	0.089	0.000	16.012	J


Partial discharge (PD) setup

PD and TD field test

PD Info

Thank You

High Voltage, Inc. www.hvinc.com